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Contact problems for bodies with elastic reinforcements in the form of gussets 

(stringers) of slight thickness are directly connected with questions of load trans- 

mission from the gussets to elastic bodies, which are important for engineering 

practice. Various plane problems have been investigated in many papers. For 

example, two fundamental problems on the transmission of a load from a gus- 
set infinite in both directions to a semi-infinite and infinite plate have been 

examined in fll. The model of a one-dimensional elastic continuum of the 

gusset is taken as the fundamental physical model. A number of papers devo- 

ted to various extensions and modifications of the fundamental Melan problems 

was later executed within the scope of the physical assumptions in [l]. A suf- 

ficiently complete bibliography of these papers is contained in [2, 31. 

The papers [4 - 71 are devoted to giving a foundation for the model of the 
one-dimensional model of the elastic continuum of the gusset and to investi- 

gating some other contact problems for a half-plane with elastic gussets. While 
the domain of plane contact problems for bodies with elastic gussets of slight 

thickness has been developed sufficiently well, the domain of three-dimensional 

contact problems for bodies with elastic gussets of slight cross section has hard- 

ly ever been investigated , and the authors know of no papers in this area where 

a rigorous solution of such problems would be presented. In some sense, paper 
183, referring to questions of determining the contact stresses on the lateral sur- 

face of a cylindrical rod imbedded in an elastic space or half-space, is an ex- 

ception. Such a situation in the area of three-dimensional problems is explained 

by the fact that significant mathematical difficulties are encountered in their 

solution. Moreover, the model of one-dimensional elastic continuum for the 
gusset in combination with the model of contact along a line is not directly 
applicable in the formulation of three-dimensional contact problems forbodies 
with elastic gussets of small cross section, The model of contact along an area, 

when it is assumed that the stresses in the contact zone are distributed uniform- 
ly in the transverse direction, also does not correspond completely to reality. 

In contrast to the case of plane problems, a new approach is proposed herein 
to the formulation of three-dimensional contact problems for a half-space rein- 
forced by elastic gussets of small cross section. Three kinds of contact problems 
are then examined, namely, problems when the elastic half-space is reinforced 
on some part of its boundary by an infinitely long gusset, a semi-infinite gusset, 



728 N.Kh.Arutlunlan and S.M.Ukhitarlan 

and a gusset of finite length. In the proposed formulation, the solution of these 
problems reduces tosolving integro-differential equations with kernels expres- 

sible by complete elliptic integrals of the first and second kinds, under definite 

boundary conditions. An effective method of solving these equations is proposed. 

1. Pormulrtion of the problem8 rnd derivation of the governlng 
c qllr tionc. Let an elastic half-space be reinforced on some part of its boundary plane 
by an elastic gusset of rectangular cross section of infinite length (Fig. 1). Let us consider 

the area F of the gusset cross section to be sufficiently small, i.e. the thickness h and 

the half-width 6 of the gusset to be sufficiently small. It is required to determine the 

Fig. 1 

distribution law of the contact stresses in the strip connecting the gusset to the half-space 

when a concentrated force P directed along the gusset axis, acts at some point of the 

upper face of the gusset. As in [l, 41, let us assume that the gusset is bent negligibly 

little because of the smallness of the gusset thickness h , i.e. the normal pressure of the 

gusset on the half-space can be neglected in the area of contact. A sufficiently com- 

plete foundation for this assumption is presented in [7] for the plane problem case. Fur- 

thermore, let us assume that the half-width 6 is so small that the tangential stresses cyz 

can be neglected in the contact zone. 

It follows from these assumptions that only tangential contact stresses t,, (z, y) act 
in the strip connecting the gusset to the half-space. If the model of contact along the 

line is taken, and it is assumed that these stresses are concentrated along the middle line 

of the contact strip, i.e. along the abscissa axis, and are applied to the half-space, then 

we can arrive at the following deduction. As is known [9’], the displacements of a bound- 

ary point of the half-space with coordinates (5, y) along the Ox axis from a force Q 
concentrated at the origin and directed along the same axis are given by 

where E2 is the elastic modulus, Y is the Poisson ratio of the material of the half-space. 
In particular, for points on the abscissa axis we have 

In the case of a load of intensity q (z) distributed along some segment [a, b] of the 0~ 
axis. we obtain 
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However, this integral does not converge in either the ordinary sense of the convergence 

of improper integrals at the point s = x , or in the sense of the Cauchy principal value. 

The difficulty with convergence of the integral, caused by assuming the model of contact 
along a line, shows that this model is inapplicable in the case of the problem under dis- 

cussion. 
Now, let us assume that the stresses z,, (5, y) are distributed uniformly in the trans- 

verse direction in the whole contact strip - 00 < 5 < oo , - 6 < y < 6 , i.e. we 
assume that the model of contact on an area holds. Then r,.. (z, y) = z,, (z) , and 
on the basis of (1.1) we have rr 

(1.2) 

h (z) = In & + In (6 + I/S2 + 2) + 

V 
-I- - 1 Ii---v c T/p + 22 (6 f 1/@qF) 1 (-=3<z<m) (1.3) 

These latter formulas show that if the assumption of uniformity of the contact tangential 

stress distribution in the transverse direction is introduced, then the displacements of 

points of the middle line of the contact strip are completely definite quantities along 
the same line. This assumption holds when the gusset is partially fastened to the half- 

space in the transverse direction. Namely, when the base of the gusset is fastened to the 
half-space just along the strip 1 y 1 < 6, (6, < 6) so that the parts 6, < 1 y 1 < 6 
of the gusset base are free of contact stresses; the quantities ‘F,, (x, y) are finite. 

Because of the continuity in the change in these quantities and the smallness of thewidth 

of the contact domain, it can be considered that the contact stresses r,, (5, y) in the 

transverse direction are uniformly distributed. 

This assumption will not hold when the gusset base is fastened completely to the half- 
space since the contact stresses T,, (5, y) become infinite for y = + b; . In other 
words, the lines y = _t b; are singular lines for the stresses r,, (z, y). In order to 

clarify the exact form of the singularities of these stresses on me lines y = f 6, we 

proceed as follows. The displacements of the boundary points of an elastic half-space 

along the OX axis from the stresses z,, (x, y) distributed over the contact domain 

- co<x<c+o, - 6 < y < 6 are given according to (1.1) by 

Applying the Fourier iransform in the variable t to both sides of this equality, we obtain 

ii (h, y) = 2* ( ~,(~~Y-~~I)--~lY--l~l(~lY--'lI)~**(~~rl)~~(1.4~ 
-6 
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ii (h, y) r j: u (x. y) eihxdx, Zx, (3,. y) = 7 T_ (x, y) F?..~ dx 
L 

--0D --a 

and K0 (X) and K, (z) are tile known Macdonald functions. Taking into account the 
series expansions for tnese latter functions, we can write 

K, (a I y - 11 I) - vk I !/ - tl I K, (A I Y - 11 1) = 

= In ) y - rl 1-l --f- R (1~1 - 11 I) 

where R (X) (- 00 < X < 00) is a definite continuous function. 

Such a representation of the kernel in (1.4) permits the assertion tilat singularities of 
the function T,, (5, y) are of square root type on the lines y = k 6 , as in the case 
of the classical coritact problem of the impression of a stamp in an elastic ilalf-plane 

without taking account of friction. This fact can be proved directly by relying on the 
results about the behavior of a Cauchy-type integral at the endpoints of the lines of in- 

tegration from [lo], as has been done in [6. 71. 

The reasoning cited suggests that the contact stress distribution in the rransverse direc- 

tion in the strip connecting tile gusset to the elastic half-space can be considered exactly 

as has been obtained on tile basis of solving tile mentioned plane contact problem. This 

assumption is also taken in the problem of impressing a narrow beam in an elastic half- 
space 1111. It is analogous to the assumption on which the theory of a narrow finite-span 

wing is constructed, 

Thus, in place of the hypothesis of uniformity of the contact stress distribution TxZ (X, 
Y) in the transverse direction, we assume that the distribution of these stresses is given 

bY 
TIZ (x, y) :-: T (x) / (3 l’-_) (1.2) 

where T (X) is the stress per unit length of the gusset to bc determined. Furthermore, we 
will assume that the axial stresses ci,(‘) are uniformly distributed over the cross-secti- 
onal area in any transverse section of tile gusset. Moreover, we shall consider the contact 

stresses under the gusset ro be concentrated along the middle line of the contact strip. 

Therefore, the hypotheses reduce to tire fact that the model of a one-dimensional elastic 

continuum for the gusset in combination witil the model of contact along the area for a 

half-space holds when the contact stress distribution law is given by (1. 5). 
Let us now proceed to deduce the fundamental governing equations. To this end, let 

us consider the equilibrium of an infinitesimal element of the gusset between the planes 
x and X -:- dx. On the basis of the assumptions made we can write 

ds’!’ 
6 

’ F __ d: \ t,, (x, y) dy $- P6 (x) _- 0 
35 

where TIz (X, Y) are the known contact stresses acting in the strip connecting the gus- 
set to the halt-space and applied to the gusset, and ci (5) is the known Dirac function. 

Taking (1. 5) and tiooke’s law into account, we have 

~__ T (I) - - J% (4 (p,&l) 

(1.9 FE, 
(I .tj) 

where I:‘, is the elastic modulus of tile gusset material, and u(l) (X) is the displacement 

of points of the middle line of tile gusset base along the same axis. 

On the other hand, the displacements u@) (x, 0) of the boundary points of tile elastic 
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half-space on the middle line of the contact domain, which occur along the same line 

due to the contact stresses z,, (r, y) applied to the half-space are according to (1.1) 

Taking account of (1.5). after some manipulation we obtain 

where K (k) is the complete elliptic integral of the first kind of modulus k. Evidently 

l,(x) = 
dkl (4 

-“--Jr (13) 
then we find after elementary computations 

kl(x> = 

Using (1.81, we obtain by the formula for the differentiation of the function k’ (k) [IS] 

where E(k) is the complete elliptic integral of tile second kind of modulus k. Tile 

condition 20 (2.) = 0 (2, 0) 

must be satisfied on the middle line of the contact domain, and in combination with 

(1.6) it reduces the problem of determining the unknown contact stress 1: (x) to the sofu- 

Gon of tile following integro-differential equation: 

d” ‘: 
7 
rfx’ 

\i 

k (X - S) i- 
2, 

-&3x ] - s) -c (s) ds = p2 ft (5) - l%(x)] (I:lO) 

p2 = n2B, (4 (1 - Y”) IS, f-1 

k (5) = 6k* (5). I (.E) = 61, (x) 

where in conformity with (1.8) and (1.9) 

Furthermore, we find from rhe equilibrium condirion of the gusset that trle solrltiou of 

the integro-differential equations (1.10) must satisfy the relation 
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7 T (I) dx -- I’ 
-- &. 

Therefore, the solution of the contact problem for a iralf-space reinforced by an elastic 

infinite gusset of small cross section reduces, under the physical and geometric hypothe- 

ses made above, to the solution of the integro-differential equation (1.10) with a kernel 
expressed by (1.11). This integro-differential equation is evidently equivalent to the 
integro-differential equation 

where H (5) is the known Heaviside function 

Writing the integro-differential equation (1.10) thus is outwardly similar to analogous 
equations encountered in plane contact problems for the bodies with elastic gussets. par- 

ticularly the equations for the fundamental Melan problems. 

Turning to the case of a semi-infinite gusset (Fig. 2). we find completely analogously 

Fig. 2 

tiiar tile solution of tile appropriate contact problem reduces to the solution of the integro- 

differential equation 
ou 

II’ ’ -a 1 d.c” 
k (z - s) + -& 1 (x - s)] t (s) ds :-: p% (x) (1.13) 

0 
under the condition Cv n 

! T (x) dx = P 
0 

(1.1‘4) 

Equation (1.13) together witn condition (1.14) is equivalent to the integro-differential 
equation 

4 O” 
--S [k (.x - S) -)- jy”T 1 (.z - s)] (p’ (.s) d.q := il*ip (5) 11 I 

(1.15) 
I) 

under tile boundary conditions 

ql (0) .= P, cp(=) -0 
( 1 . 16) 

x 

cp (x) 7: J’ - !’ T (.s) ds 
I, 
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where T (z) is an unknown contact stress acting in the strip connecting the semi-infinite 

gusset to the elastic half-space. 

Finally, the solution of the contact probem for a half-space reinforced on its boundary 

by a finite gusset of small cross section (Fig. 3) reduces to the solution of the integro- 
differential equation 

under the boundary conditions 

cp (-4 = 0, cP(4 = p 

‘p (X) = f 7 (s) ds 
--(I 

where z (z) is an unknown contact stress under the elastic gusset. 

(1.17) 

(1.18) 

Fig. 3 

The solution of the posed problems under the assumption of uniformity of the contact 
stress distribution in the transverse direction of the gusset is evidently reduced to the very 

same equations on the basis of (1.2). but only with kernels in the form of the function 

h (z) form (1.3). However, we shall not consider these equations herein. 
Let us now investigate the structure of the kernels of the mentioned integro-differen- 

tial equations. It is easy to see that the complete elliptic integral of the first kind K (k) 
becomes infinite for k = 1 , and therefore, the function k (z) from (1.11) has a singular- 

ity at z = 0. Let us elucidate the form of this singularity. According to (1.8) and (1.11) 
for t = 0 the function k (t) has a logarithmic singularity. Let us represent this function 

as 
k (z) = In & i- r (4 (t.19) 

(1.20) 

where the function r (z) , on the basis of the above, is continuous and has continuous 
derivatives, at least to second order inclusive, on the whole real axis. As regards the 

function Z(z) expressed by the second of formulas (l.ll), it is continuous on the whole 
real axis and its values fill the segment [0, 11. Furthermore we have 

k(z)+&(z)-k(i) [t-!$--a] 
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Evidently 1 (0)/k (0) = 0 , and for any z L + U a & can he selected so small and independ - 
ent of 2, mat tire function 1 (r)fk (z) would he arbitrarily close to unity for all x + 0. 
Then, to arbitrarily high accuracy we can assume 

provided that ii is sufficiently small. In other words, for sufficiently narrow gusset this 
equality will differ as little as desired from the true. Let us note that this result can be 
obtained at once if we set (.z + 0) x’) 

52 .: ii2 
_ 

1 

1 

0 (2 = 0) 

for sufficiently small b in the influence function (1.1). 

The elucidated investigation of the kernel permits replacement of the integro-differ- 

ential equations (1.10) and (1.13) under the condition (1.14). and (1.17) under the bound- 

ary conditions (1.18) obtained to determine the contact stresses under infinite, semi- 
infinite, and finite gussetsof sufficiently small width, respectively, hy integro-differential 
equations a 

$2 ’ 
dz2 s 

k (x - S)T(s)S)ds--C2[t(~)-~PS(s)l (1.10’) 
--02 

cc 

& \ Ic (x - s) z (s) d.s -.- c% (x) 
. 

(l.lY) 

under the condition 
d 

z(r da P ) .F- (1.14’) 

and the integro-differential equation 
(1 

d 

dx s h-(x- s) Q)’ (s) as - c2qJ (x) 
-gz 

(1 .li’) 

under the boundary conditions 

‘f (- II) 0, 

Here 
c2 = f.12(1 - Y) :-- n2E2 [4 (1 -t_ v) IrE,]-’ 

Analogous equations corresponding to me integro-differential equations (1.12) and 

(1.1~5) under the boundary conditions (1.16) in the sens, p mentioned can also be obtained. 

If the derivative symbol is introduced under the integral sign in these latter equations 
and in (1.17’). and the form of the function 1~ (5) is taken into account, then integro- 
differential equations of analogous structure to tire corresponding equations for plane 
contact problems are obtained. The difference is just that the kernel of the equations 

in the cases we considered consists of a Cauchy kernel and some continuous function 
taking account of the tilde-dimensional effect of the problems under consideration. 

Let us note that the kernal k (X - .s) generated by the functions k (5) is a singular 
kernel for --n < x, s ( c . An investigation of this kernel is contained in pl]. 

Let us also note that tire boundary conditions (1.18). as well as the condition (1.14). 
express the fact that the loads applied to the gussets are transmitted completely fo the 
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base without concentrated components. This can be proved by a method completely 

analogous to that mentioned in 131. 

2. C&IS of rn infinite gullet. The solution of the integro-differential 

equation (1.10’) is easily obtained by using the Fourier transform. Performing the trans- 
formation. we arrive at the algebraic equation 

[C2 - i*K (A)1 T (A) == - c2P 

K(A) = T k(x) eiLX dxl T (A) = f t (z) eihx dx (2.1) 
-cc -00 

Hence 

(2.2) 

Using the known relationships ( [12]. p. 443, formula 3. 773.6. p. ‘716. formula 6. 592.7), 

we find 
K(A) = nlo (‘l&Y KO (L/&8) (h > 0) 

K (- h) =: K (A) 
(2.3) 

where 1, (x) is the modified Bessel function of tile first kind. Tile following asymptotic 

formulas [121: 
(2.4) 

are valid for the functions 1, (z) and K, (2) for large positive values of the argument 

5 l 

Let us introduce the function 

f (A) = c2 + A2 K (A) 

This function is evidently continuous on the whole real axis and is strictly positive, and 

j (0) = c2. Moreover, in conformity with (2.3) 

f (k) = c2-j nhl6 k-+$oo (2.5) 

Let us introduce the function H (1,) related to f (h) by means of 

H (A) = 
C?_tllh/6 

-1=x 
C2+nh/6 

f (1) c2 + k2K (I) 
-4 

where 
H (0) = H (oo) = 0 

Now turning to (2.2). let us represent it as 
m 00 

The second integral in this latter equality is expressed by the formula 

co 

’ s cos ~zl-0. 
c2-j-.~/6 

= - (cos qx Ci qx + sin qs Si qr) 
0 

(2.6) 

(q r= lw in) 

wilere si (x), ci (J) are the sine and cosine intergal functions of 5. Then we will 
have 

CC 

t (3.) = - $- \ yi t$s,y dh + y (cos q-r: Ci qx + sin qx Si qz) (2.7) 

(; 
- 
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It follows from (2.5) and (2.6) that as x -+ M the integral in (2.7) tends to zero fairly 
rapidly, and therefore, the behavior of the contact stresses under the gusset is governed 

completely by the second member of this formula for large I. This term, i.e. the func- 
tion p(s) = T (Co9 qx Ci qx + sin qx Si qz) (2.8) 

is the known Melan solution [l] to the accuracy of the factor q . Therefore, the con- 
tact stresses under an infinite gusset decrease according to the law of the Melan function 

(2.8) for large z . On the other hand, evidently z (0) = 00. 

3. Cake of a remi-infinite guc,et, A solution of the integro-differential 
equation (1.13’) under the condition (1.14’) can be constructed by the known method 

developed in 113. 143. Following this method, let us assume t (z) z 0 for - M < 

5 < 0 and let us introduce the function 
m 

u (5) = s k (x - s) t (s) ds (3.1) 
--Co 

then using the known convolution property, let us give the integro-differential equation 

(1.13’) under the condition (1.14’) the form 
m 

s 
(c2P + ihu (0)- [c2 + haK (A)] T (A)} e-ihxdh = 0 (0 < z < 00) 

-02 

where K (h) is defined by (2.3) 

T(h) = [ t(r)eiAXdz (3.2) 

We can write the condition T (z) = 0 for -oo < x < 0 as 

7’ (A) e-ihxdh _- 0 t-w< z<O) 

Then on the basis of [14], tige exist funcrlons CD+ (z) and CD_ (z) which are holomor- 

phic in the upper and in the lower half-plane, respectively. These functions vanish ar 

infinity and they have the following form on rhe real axis: 

(11, (h i-. i0) -= T (h) 

CD_ (h - i0) = - I? + haK (A.)lT (h) t czP t ihu (0) 
Hence 

(3.3) 

where in conformity with (1.14’) we have from (3.2) 

CD+ (0 -t i0) r= P (3.4) 

Therefore, the integro-differential equation (1.13’) under the condition (1.14’) is equi- 
valen$ to the Riemann boundary value problem (3.3) for a half-plane under the condition 
(3.4). If the solution of this problem is known, i.e. two functions @+ (z) and @_ (2) 

possessing the above-mentioned properties have been found, then the solution of (I. 13’) 
under the condition (1.14’) is determined by O” 

t (5) - & 
s 

CD, (h + i0) e-ihr dh (3.5) 
-0: 



Certain contact problems for a halfrrpace 131 

Since the function c2 + h2K (h) is strictly positive and even on the real axis, the 

index of the Riemann problem (3.3) equals zero. Therefore, this problem has a unique 

solution, where the function @+ (h f i0) is expressed in conformity with 1141 by the 

formula 

2ni [ca + l.aK (I)] s (-=<a<<) 

H(a)= I/&exp [-& i y-y 

w (h) = - [c2 + A&&l 
The integrals herein should be understood in the Cauchy principal value sense. Substitu- 

ting the expression for the function 0, (h I i0) into (3. S), we obtain the contact 

stresses z (.r) under a semi-infinite gusset, after which the constant u (0) can be deter- 

mined from (3.1). 

It should be noted that the expression (D, (iL f iU) obtained is complex in structure. 
On the other hand, the problem of the effective exact factorization of the function 

c2 -t- h2K (h) on the real axis is fraught with great difficulties. Hence, from the prac- 
tical viewpoint it is convenient to have an approximate factorization of this function. 

A method of approximate factorization of this function will be proposed here which is 

based on reducing the Riemann problem (3.3) under the condition (3.4) to an infinite 

system of linear equations. 
To this end, let us represent (3.3) as 

Then 

CD+ (h + i0) - a)_ (a - i0) = - II (lb)@_ (h - io> + g (V 
(-m<h<m) 

R(h) = 
i+c?+haKJw C’P + ihu (0) 

c2 + )L2K (I,) ’ 
g(h) = 

c2 + haK (h) (3.6) 

(P+(z), Imz>O 

@(‘) = (0_(z), Imz<n 

where a+ (z) and a_ (z) are the above-mentioned functions. Using the known Sokhot- 
skii-Plemelj formulas, we find 

m 
ai_ (h - i0) -. + R (h)C()~ - i(j) - & \ 

R (s) 0. (s - io) ds 

__'m 
S- 

~ + G(A) (3.i) 
I 

where al 

G(hj = - Gg(h)-I- &- \ s (3.8) 
La 

is a known function. Therefore, the Riemann problem (3.3) together with (3.4). is equi- 
valent to the singular integral equations(3.7) in 0.. (h - iO), to which should be 
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appended the condition 
Q)_ (0 . .. i0) u (3.0) 

resulting from(3.4). After the function (I)_ (3. - i(j) has heen determined from (3,7), 

the function t!)+ (J. I- io) can be determined from (3.3). 
Then, let us turn to new variables by assuming 

h 7.: tg I I 2. s =: tg 1112 (-It < t, IL <lx) 

Omitting the intermediate calculations, let us write the,final form of (3. ‘7) 
? 

(:!.I()) 

where 

cp 0) -= VzQ (t) (p (t) - -& \ CL&+ 
. .’ cp(u)du /-h(t)- n (X12) 

: 

* (t) = (I>_ (tg 1!a1 - iO), () (t) - - R (Q L&t) 

Hence, condition (1.16) goes over into tile following: 

‘fi (0) = 0 (3.12) 

Thus, the singular integral equation (3.7) with Cauchy kernel is reduced, under the con- 

dition (3.9). to the singular integral equation (3.11) with the Hilbert kernel under the 
condition (3.12). Let us note that in conformity with the first formula in (3.6) 

Let us seek the solution of the itlrcgral equation (3.11) as the Fourier series 

‘p(t) ;; i cp&‘“’ (- n<t <n) 
*z --T 

Simultaneously, let IIS assume 

c, (t) = 5 QMfimr. It (t) = jj Ii,e’imt t---n<t<N 
,n__- co m-7 -02 

Taking account of the known llilbert formulas 

i : 
2nt s 

ctg+e i”Udu-signkei”’ (k:2=o,tf, .f2 ,... j 

--s 

we obtain from (3.11) ‘pm =- A, (m - 1. ‘L, . .) 
‘[lo ” ‘jzqo ‘- /lo - A 

U)m ‘= h -i- /h,, (111 .: -1. --Z....) 

q(t) = Q(~)~(~) = 5 &e’“! (--z<t<z) 
nip--ix 

Evidently 
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Now, taking account of (3.8) we find h, = 0 (~72 = f,2,. . -1. Consequently, 

‘pm = 5 &n(Pm + L (m = - I, - 2,. . .) 
m=--m 

’ i Qm~m+ho--- (PO = 2 
t?l=--a, 

(3.14) 

Moreover, according to (3.12) 0 

2 (Pm=0 (3.15) 
m=--m 

Thus, an infinite system of linear equations (3.14) representing a discrete analog of 

integral equations on a half-line with kernels dependent on the difference in arguments 

has been obtained to determine the unknown coefficients {~p~}~_~ . The theory of 

such equations has been developed in [13]. It should be noted that this result could have 

been foreseen a priory if we had taken into account that the transformation (3.10) 

to the problem of factorizing some function on the real axis reduces to the problem of 

factorizing the corresponding function in the unit circle. 

After some manipulation, (3.14) and (3.15) can be represented as 

qk8 = _’ 
Q. j j  Qk-m’Pm* + hk* 

m=I 
(k = 1, 2,. . .) (3.16) 

‘PO 
*-f jj Qmcpm*+ho*- A, j&&,*=0 (3.17) 

m==o 
where 

‘ph.* = (P-k, hk* = - (Ii-k + Qk%*) 00-l (k = 1, 2, . ..) 

‘pII* =: %, h,,* = h 0 

The &me to the right of the summation sign in (3.16) means that the term with sub- 

script m = k is omitted in this sum. 
Let us investigate the question of regularity of the infinite system (3.16). To this 

end, let us form the sums 0~ m 

Sk = l Qo 1-’ 2’ l Qk_,,, l = l Qo 1-l 2’ 1 Q, 1 (k = 1, 2,. . .) 
m=1 p-1-k 

where the term with zero subscript is omitted in the last sum. It is easy to see that 

S,<IQol-’ j$ IQ,1 (k = 1, 2, . . .) 
p=-CC 

Let us note that in conformity with (3.13) 
p. 

1 
QP=2n * c P(t)cosptdt (p=O, flv It%.. .) 

;;t) = [c2 $- tga l/atK (tg ‘/at)]-’ 

According to the known Bochner-Khinchine theorem, the function [e4 + ASK (A)]-' is 
a positive-definite function on the real axis. Therefore, the function P(Z) is a positive- 
definite function in the segment i--n, n] , whereupon its Fourier coefficients are non- 
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negative. The above permits the assertion that 

Sk d (p (6) _- @,) @I-“ (h- -= 1, 2,. .) 

Lez us require that P (O)/~~ < 2 or 

c’Qo > 112 (Y.lt;) 

Upon compliance with condition (3.18). the infinite system (3.16) is completely regular, 

and therefore, its solution can be found by the method of reduction or successive approx- 

imations. After the coefficients {~~}~_t have been found, the coefficients q,,* and 

A can be determined from (3.17). 

let us show that for sufficiently large C’ the condition (3.18) is satisfied. Indeed 
n I --E 

where a is a small positive number within the interval (0, n/2). Furthermore, let us 
introduce the notation 

IV =f max 
o@gn--r I cz-itg2 , 

2-b [t&)] 

Then 
n--L 

p , * rft 
CqJ > y- 

3 
-__&+ +j 
C‘J -i- M 

0 
It hence follows that for sufficiently large cz and sufficiently small a the mentioned 

condition is satisfied. 
Let us note that when cs = 0, the integro-differential equation (1.13’) or equation 

(1.15) describes the appropriate contact problem for an absolutely rigid semi-infinite 

gusset, i.e. for a semi-infinite stamp. In this case, the condition (3.18) will not hold, 

and therefore, this problem requires a separate investigation. 

4. C8ls of a finite gulrct, Now, let us turn to the solution of the integro- 

differential equation (1.17’) under the boundary conditions (1.18’). By using (1.19) 

after some manipulations we arrive at the singular inte~o-differential equation 
1 

U 
fit 

L + v (.r - s)] ‘p’ (s) ds == ac2y, (5) 
5 ..- 2 

under the boundary conditions 

cp(--1) : -- 0, 

where in conformity with (1.20) 

llere 

where the contact stress under the gusset is ROW determined by the formula 

z(5) = @fa)cp’(z/a) (-e<z<a) 

Following 161, let us assume 
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where T, (x) = COS {?8 arccos z) are Chebyshev polynomials of the first kind. Then, 

by proceeding completely analogously to the exposition in 167, we show that the solution 

of the integro-differential equation (4. I) under the boundary conditions (4.2) reduces to 
the solution of the following infinite system in the coefficients (s,)~~: 

\3, it) = j: V (&x3 t - cos If) GUS nu du (n = 0, 1, 2, t 1.) 
0 

An investigation of the infinite system (4.3) in the case of the one kernel Kg!, is 
contained in [S]. Let us show that the addition of a new kernel Kc!,, to the former 

does not violate the regulari~ of the initial infinite system in the sense of its quasi- 
complete regularity. 

Indeed, on the basis of Sect. I relative to the properties of the function r (x) , we can 

write 
(YLn=I1,2,.,.) 

Therefore 

XR 

d m,n ?’ cc d (u, t)sin t Sin mt sin nu du dt 
* l . 
II 0 

dfu, t) =-& I”(cost- co9 u) I 

cg QI, 

II 

n=1 n=1 

Let us note that the coefficients {d,,,):, ,_ are Fourier coefficients of the continuous 
function of two variables d (u, t) sin 2 in the complete system of functions (sin nu 
si u rntlz, nSl orthogonal in the square 0 < tl u c fl . Then by virtue of the Bessel 
inequality, the following two series converge 

5 J%.*12 

Therefore, the series 053 
??X, *=1 

m m 

m=1 n=i 
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also converges, i.e. at least 
D,,l = 0 (tn -(l+CQ I”, -t <r; 

where F. is a small positive number. Thus 

;1- 
Sm’ h +&,I (m -= 1, 2. .) 

,,--I 

Hence, by using the Cauchy-Buniakowski inequality we obtain 

(5.1,) 

Taking (4.4) into account we have’ 

Sm = 0 (,-(t+e)/2) ,n - .m 

which indeed proves the assertion made above. 
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The purpose herein is to derive the relationships of the theory of elastic shells 

from the variational equation of the mechanics of continuous media in the ge- 
neral case of physically and geometrically nonlinear models. The examination 

of this question is interesting in connection with the fact that all the hypotheses 

acquire the most compact and explicit formulation in the variational approach, 

and a logical basis appears for the comparison and estimation of the various 
models proposed in the theory of shells. Moreover, the shell models yield an 
interesting illustration of models of continuous media in which there are firstly 

higher derivatives, and secondly, internal degrees of freedom originate, as will 

be seen later. The appearance of the internal degrees of freedom requires the 

establishment of additional equations, in addition to the ordinary equations of 

mechanics, in order to determine new parameters, and to raise the order of the 
differential equations - additional boundary conditions and conditions on dis- 

continuities. These relationships have been obtained by using methods devel- 
oped for arbitrary models of continuous media with internal degrees of freedom 
and with higher derivatives in fl, 21. Let us note that the extension of the the- 
ory to inelastic shells is associated only with complicating the functional 6W* 

in (1.1) and adding new degrees of freedom due to plastic deformations, viscous 
deformations, etc. Only the general part of the theory is contained herein. 

Specific shell models will be examined separately. 

1. VItiational aqurtfon in the theory of elr#tic bodler. The 
fundamental relationships of the theory of elastic bodies can be obtained from the vari- 

ational equation [ 1 - 31 
BjlAdrdt+dW*+6W=O 

1V 
(1.1) 

where the Lagrangean A and the functional 6 W* are the given quantities, and b W is 

an integral of a linear combination of the variations in the displacements over the bound- 

‘) Presented to the 8th All-Union Conference on the Theory of Plates and Shells, Rostov- 

on-Don, 1971. 


